
Starburst: A hybrid algorithm for video-based eye tracking combining
feature-based and model-based approaches

Dongheng Li, David Winfield, Derrick J. Parkhurst
Human Computer Interaction Program

Iowa State University, Ames, Iowa, 50010

Abstract
Knowing the user’s point of gaze has significant potential
to enhance current human-computer interfaces, given that
eye movements can be used as an indicator of the atten-
tional state of a user. The primary obstacle of integrat-
ing eye movements into today’s interfaces is the availabil-
ity of a reliable, low-cost open-source eye-tracking system.
Towards making such a system available to interface de-
signers, we have developed a hybrid eye-tracking algorithm
that integrates feature-based and model-based approaches
and made it available in an open-source package. We refer
to this algorithm as “starburst” because of the novel way
in which pupil features are detected. This starburst algo-
rithm is more accurate than pure feature-based approaches
yet is significantly less time consuming than pure model-
based approaches. The current implementation is tailored
to tracking eye movements in infrared video obtained from
an inexpensive head-mounted eye-tracking system. A vali-
dation study was conducted and showed that the technique
can reliably estimate eye position with an accuracy of ap-
proximately one degree of visual angle.

1. Introduction
The use of eye tracking has significant potential to enhance
the quality of everyday human-computer interfaces. Two
types of human-computer interfaces utilize eye-movement
measures – active and passive interfaces. Active interfaces
allow users to explicitly control the interface though the use
of eye movements [8]. For example, eye typing has users
look at keys on a virtual keyboard to type instead of manu-
ally depressing keys as on a traditional keyboard [9]. Such
active interfaces have been quite effective at helping users
with movement disabilities interact with computers. These
techniques may also be useful for normal interface usage
given that when users intend to select an icon in a graphical
user interface, they typically first look at the icon and thus
selection can potentially be speeded with eye tracking [16].
On the other hand, passive interfaces monitor the user’s eye
movements and automatically adapt themselves to the user.
For example in video transmission and virtual reality ap-
plications, gaze-contingent variable-resolution display tech-

(a) (b)

(c) (d)
Figure 1: (a)&(b) Head-mounted eye tracker (c) Image of a scene
obtained by the eye tracker. (d) Image of the user’s right eye il-
luminated with infrared light. Note the clearly defined dark pupil
and the specular reflection of the infrared LED. Also note the de-
gree of line noise present in (c)& (d) due to the low-cost construc-
tion based on consumer-grade off-the-shelf parts.

niques actively track the viewer’s eyes and present a high
level of detail at the point of gaze while sacrificing level of
detail in the periphery where it is not distracting [13, 14].

While eye tracking has been deployed in a number
of research systems and to some smaller degree con-
sumer products, eye tracking has not reached its full po-
tential. Importantly, eye tracking technology has been
available for many years using a variety of methods (e.g.,
Purkinje-reflection based, contact-lens based eye coil sys-
tems, electro-oculography; see [19] for a survey of classi-
cal eye-tracking technology). The primary obstacle to inte-
grating these techniques into human-computer interfaces is
that they have been either too invasive or too expensive for
routine use. Recently, the invasiveness of eye tracking has
been significantly reduced with advances in the miniatur-
ization of head-mounted video-based eye-trackers [15, 1].
Remote video-based eye tracking techniques also minimize
intrusiveness [6, 10], however can suffer from reduced ac-
curacy with respect to head-mounted systems. Given these
advances, the most significant remaining obstacle is the
cost. Currently, a number of eye trackers are available on

1



the market and their prices range from approximately 5,000
to 40,000 US Dollars. Notably, the bulk of this cost is not
due to hardware, as the price of high-quality digital cam-
era technology has dropped precipitously over the last ten
years. Rather, the costs are associated with custom soft-
ware implementations, sometimes integrated with special-
ized digital processors, to obtain high-speed performance.

This analysis clearly indicates that in order to inte-
grate eye tracking into everyday human-computer inter-
faces, the development of widely available, reliable and
high-speed eye-tracking algorithms that run on general
computing hardware need to be implemented. Towards this
goal, we have developed a hybrid eye-tracking algorithm
that integrates feature-based and model-based approaches
and made its implementation available for distribution in an
open-source package. In combination with low-cost head-
mounted eye-tracking systems [18], there is a significant
potential that eye tracking will be successfully incorporated
into the next generation of human-computer interfaces.

2. Problem statement
As mentioned above, eye-tracking systems can be divided
into remote and head-mounted systems. Each type of sys-
tem has its respective advantages. For example, remote sys-
tems are not as intrusive but are not as accurate or flexible
as head-mounted systems. In other work, we have devel-
oped a low-cost head-mounted eye tracker [18]. This eye
tracker consists of two consumer-grade CCD cameras that
are mounted on a pair of safety glasses (see Figure 1). One
camera captures an image of the eye while the other cap-
tures an image of the scene. The two cameras are synchro-
nized and operate at 30hz each capturing 640x480 pixels.
In this paper we develop an eye-tracking algorithm appli-
cable for use with images captured from this type of head-
mounted system. However, the proposed algorithm could
also be applied to video captured with a remote system.

Two types of imaging processes are commonly used in
eye tracking, visible and infrared spectrum imaging [5].
Visible spectrum imaging is a passive approach that cap-
tures ambient light reflected from the eye. In these images,
it is often the case that the best feature to track in visible
spectrum images is the contour between the iris and the
sclera known as the limbus. The three most relevant fea-
tures of the eye are the pupil - the aperture that lets light
into the eye, the iris - the colored muscle group that con-
trols the diameter of the pupil, and the sclera, the white pro-
tective tissue that covers the remainder of the eye. Visible
spectrum eye tracking is complicated by the fact that un-
controlled ambient light is used as the source, which can
contain multiple specular and diffuse components. Infrared
imaging eliminates uncontrolled specular reflection by ac-
tively illuminating the eye with a uniform and controlled
infrared light not perceivable by the user. A further benefit

of infrared imaging is that the pupil, rather than the lim-
bus, is the strongest feature contour in the image (see e.g.,
Figure 1d); both the sclera and the iris strongly reflect in-
frared light while only the sclera strongly reflects visible
light. Tracking the pupil contour is preferable given that the
pupil contour is smaller and more sharply defined than the
limbus. Furthermore, due to its size, the pupil is less likely
to be occluded by the eye lids. The primary disadvantage
of infrared imaging techniques is that they cannot be used
outdoors during daytime due to the ambient infrared illumi-
nation. In this paper, we focus our algorithm development
on infrared spectrum imaging techniques but aim to extend
these techniques to visible spectrum imaging as well.

Infrared eye tracking typically utilizes either bright-pupil
or dark-pupil techniques (however see [10] for the com-
bined use of both bright-pupil and dark-pupil techniques).
Bright-pupil techniques illuminate the eye with a source
that is on or very near the axis of the camera. The result
of such illumination is that the pupil is clearly demarcated
as a bright region due to the photoreflective nature of the
back of the eye. Dark-pupil techniques illuminate the eye
with an off-axis source such that the pupil is the darkest
region in the image, while the sclera, iris and eye lids all
reflect relatively more illumination. In either method, the
first-surface specular reflection of the illumination source
off of the cornea (the outer-most optical element of the eye)
is also visible. This vector between the pupil center and the
corneal reflection is typically used as the dependent mea-
sure rather than the pupil center alone. This is because the
vector difference is insensitive to slippage of the head gear
- both the camera and the source move simultaneously (see
the results of our validation study, below). In this paper we
focus on algorithm development for dark-pupil techniques
however our algorithm could be readily applied to bright-
pupil techniques.

3. Related Work
Eye-tracking algorithms can be classified into two ap-
proaches: feature-based and model-based approaches.
Feature-based approaches detect and localize image fea-
tures related to the position of the eye. A commonality
among feature-based approaches is that a criteria (e.g., a
threshold) is needed to decide when a feature is present or
absent. The determination of an appropriate threshold is
typically left as a free parameter that is adjusted by the user.
The tracked features vary widely across algorithms but most
often rely on intensity levels or intensity gradients. For ex-
ample, in infrared images created with the dark-pupil tech-
nique, an appropriately set intensity threshold can be used
to extract the region corresponding to the pupil. The pupil
center can be taken as the geometric center of this identified
region. The intensity gradient can be used to detect the lim-
bus in visible spectrum images [21] or the pupil contour in

2



infrared spectrum images [12]. An ellipse can then be fitted
to these feature points.

On the other hand, model-based approaches do not ex-
plicitly detect features but rather find the best fitting model
that is consistent with the image. For example, integro-
differential operators can be used to find the best-fitting
circle [3] or ellipse [11] for the limbus and pupil contour.
This approach requires an iterative search of the model pa-
rameter space that maximizes the integral of the derivative
along the contour of the circle or ellipse. The model-based
approach can provide a more precise estimate of the pupil
center than a feature-based approach given that a feature-
defining criteria is not applied to the image data. However,
this approach requires searching a complex parameter space
that can be fraught with local minima. Thus gradient tech-
niques cannot be used without a good initial guess for the
model parameters. Thus, the gain in accuracy of a model-
based approach is obtained at a significant cost in terms of
computational speed and flexibility. Notably however, the
use of multi-scale image processing methods [2] in combi-
nation with a model-based approach hold promise for real-
time performance [5].

4. Starburst Algorithm
Presented in this section is an eye-tracking algorithm that
combines feature-based and model-based approaches to
achieve a good tradeoff between run-time performance and
accuracy for dark-pupil infrared illumination. The goal of
the algorithm is to extract the location of the pupil center
and the corneal reflection so as to relate the vector differ-
ence between these measures to coordinates in the scene
image. The algorithm begins by locating and removing the
corneal reflection from the image. Then the pupil edge
points are located using an iterative feature-based tech-
nique. An ellipse is fitted to a subset of the detected edge
points using the Random Sample Consensus (RANSAC)
paradigm [4]. The best fitting parameters from this feature-
based approach are then used to initialize a local model-
based search for the ellipse parameters that maximize the fit
to the image data.
4.1. Noise Reduction
Due to the use of a low-cost head-mounted eye tracker de-
scribed in Section 2, we need to begin by reducing the noise
present in the images. There are two types of noise, shot
noise and line noise. We reduce the shot noise by applying
a 5× 5 Gaussian filter with a standard deviation of 2 pixels.
The line noise is spurious and a normalization factor can be
applied line by line to shift the mean intensity of the line
to the running average derived from previous frames. This
factor C for each line l in frame i is

C(i, l) = βĪ(i, l) + (1 − β)C(i − 1, l) (1)

where Ī(i, l) is the average line intensity and β = 0.2. Note
that this noise reduction technique is optional and can be

eliminated when the algorithm is used in combination with
an eye tracker capable of capturing less noisy images.
4.2. Corneal reflection detection, localization

and removal
The corneal reflection corresponds to one of the brightest
regions in the eye image. Thus the corneal reflection can be
obtained through thresholding. However, a constant thresh-
old across observers and even within observers is not opti-
mal. Therefore we use an adaptive thresholding technique
in each frame to localize the corneal reflection. Note that
because the cornea extends approximately to the limbus, we
can limit our search for the corneal reflection to a square re-
gion of interest with a half width of h = 150 pixels (see the
Discussion section regarding parameter values). To begin,
the maximum threshold is used to produce a binary image in
which only values above this threshold are taken as corneal
reflection candidates. It is likely that the largest candidate
region is attributable to the corneal reflection, as other spec-
ular reflections tend to be quite small and located off the
cornea as well as near the corner of the image where the
eye lids meet. The ratio between the area of the largest can-
didate and the average area of other regions is calculated
as the threshold is lowered. At first, the ratio will increase
because the corneal reflection will grow in size faster than
other areas. Note that the intensity of the corneal reflection
monotonically decreases towards its edges, explaining this
growth. A lower threshold will, in general, also induce an
increase in false candidates. The ratio will begin to drop as
the false candidates become more prominent and the size
of the corneal reflection region becomes large. We take the
threshold that generates the highest ratio as optimal. The
location of the corneal reflection is then given by the ge-
ometric center (xc, yc) of the largest region in the image
using the adaptively determined threshold.

Given its small size, the corneal reflection is approxi-
mately a circle in the image. While the approximate size of
the corneal reflection can be derived using the thresholded
region from the localization step, this region does not typi-
cally include the entire profile of the corneal reflection. To
determine the full extent of the corneal reflection, we as-
sume that the intensity profile of the corneal reflection fol-
lows a bivariate Gaussian distribution. If we find the radius
r where the average decline in intensity is maximal and re-
late it to the radius with maximal decline for a Gaussian (i.e.
a radius of one standard deviation), we can take the full ex-
tent of the corneal reflection as 2.5r to capture 99% of the
corneal reflection profile. We find r through a gradient de-
cent search that minimizes

∫
I(r + δ, xc, yc, θ) dθ∫
I(r − δ, xc, yc, θ) dθ

(2)

where δ = 1, and I(r, x, y, θ) is the pixel intensity at angle
θ on the contour of a circle defined by the parameters r, x

3



1 Input: Eye image with corneal reflection removed, Best
guess of pupil center

2 Output: Set of feature points
3 Procedure:
4 Iterate
5 Stage 1:
6 Follow rays extending from the starting point
7 Calculate intensity derivative at each point
8 If derivative > threshold then
9 Place feature point

10 Halt marching along ray
11 Stage 2:
12 For each feature point detected in Stage 1
13 March along rays returning towards the start point
14 Calculate intensity derivative at each point
15 If derivative > threshold then
16 Place feature point
17 Halt marching along ray
18 Starting point = geometric center of feature points
19 Until starting point converges

Figure 2: Feature-point detection method

and y. The search is initialized with r =
√

area/pi, where
area is the number of pixels in the thresholded region. The
search converges rapidly.

Radial interpolation is then used to remove the corneal
reflection. First, the central pixel of the identified corneal
reflection region is set to the average of the intensities along
the contour of the region. Then for each pixel between the
center and the contour, the pixel intensity is determined via
linear interpolation. An example of this process can be seen
in Figure 5 (compare a and b).

4.3. Pupil contour detection
We have developed a novel feature-based method to detect
the pupil contour. The pseudo code that describes the al-
gorithm is shown in Figure 2. While other feature-based
approaches apply edge detection to the entire eye image
or to a region of interest around the estimated pupil loca-
tion, these approaches can be computationally wasteful as
the pupil contour frequently occupies very little of the im-
age. We, instead, detect edges along a limited number of
rays that extend from a central best guess of the pupil cen-
ter. These rays can be seen in Figure 3a. This method takes
advantage of the high-contrast elliptical profile of the pupil
contour present in images taken with infrared illumination
using the dark-pupil technique.

For each frame, a location is chosen that represents the
best guess of the pupil center in the frame. For the first
frame this can be manually determined or taken as the cen-
ter of the image. For subsequent frames, the location of
the pupil center from the previous frame is used. Next, the
derivatives ∆ along N = 18 rays, extending radially away
from this starting point, are independently evaluated pixel
by pixel until a threshold φ = 20 is exceeded. Given that
we are using the dark-pupil technique, only positive deriva-

(a)

(b) (c)
Figure 3: Feature detection. (a) Pupil contour edge candidates
are detected along the length of a series of rays extending from a
best guess of the pupil center. Pupil contour candidates are marked
using crosses. Note that two contour candidates are incorrect -
one ray reaches the border and does not generate a candidate. (b)
For each pupil contour candidate another set of a rays are gener-
ated that create a second set of pupil contour candidates (c) pupil
contour candidates not on the pupil contour can lead to additional
feature points not on the contour however these are typically not
consistent with any single ellipse.

tives (increasing intensity as the ray extends) are consid-
ered. When this threshold is exceeded, a feature point is
defined at that location and the processing along the ray is
halted. If the ray extends to the border of the image, no fea-
ture point is defined. An example set of candidate feature
points is shown in Figure 3a.

For each of the candidate feature points, the above de-
scribed feature-detection process is repeated. However, rays
are limited to γ = ±50 degrees around the ray that origi-
nally generated the feature point. The motivation for limit-
ing the return rays in this way is that if the candidate feature
point is indeed on the pupil contour (as shown in Figure 3b),
the returning rays will generate additional feature points on
the opposite side of the pupil such that they are all con-
sistent with a single ellipse (i.e. the pupil contour). How-
ever, if the candidate is not on the pupil (for example see
Figure 3c), this process will generate additional candidate
feature points that are not necessarily consistent with any
single ellipse. Thus, this procedure tends to increase the ra-
tio of the number of feature points on the pupil contour over
the number of feature points not on the pupil contour. Given
that feature points defined by a large ∆ are more likely to be
located on the pupil contour (as this is the strongest image
contour), the number of rays returned is set to 5φ/∆. Note
that the minimum number of rays is 5 because by definition
a feature point is determined by ∆ >= φ.

The two-stage feature-detection process improves the ro-
bustness of the method to poor initial guesses for the start-
ing point. This is a problem when an eye movement is

4



made as the eye can rapidly change positions from frame
to frame. This is especially true for images obtained at low
frame rates. For example, shown in Figure 4a is such a case.
While the initial set of rays only detects three feature points
on the pupil contour, the return rays from these three points
detect many more points on the contour (see Figure 4b).
The combined set of feature points is shown in Figure 4d
and the number of points on the contour well exceed those
off of the contour. However, the feature points are biased to
the side of the pupil contour nearest the initialization point.
Although another iteration of the ray process would min-
imize this bias, the computational burden grows exponen-
tially with each iteration and thus would be an inefficient
strategy.

At this point an ellipse could be fitted to the candidate
points, however, the bias would induce a significant error
into the fit. To eliminate this bias, the above described two-
stage feature-detection process is iterated. For each iter-
ation after the first, the average location of all the candi-
date feature points from the last iteration is taken as the
next starting location. The red circle in Figure 4d shows the
starting point for the second iteration. The detected feature
locations for the second iteration are shown in Figure 4e.
Note the absence of a strong bias. Figure 4f shows how the
central locations rapidly converge to the actual pupil cen-
ter. The iteration is halted when the center of the detected
feature points changes less than d = 10 pixels. When the
initial guess is a good estimate of the pupil center, for ex-
ample during eye fixations which occupy the majority of the
frames, only a single iteration is required. When the initial
estimate is not good, typically only a few iterations (< 5)
are required for convergence. If convergence is not reached
within i = 10 iterations, as occurs sometimes during a blink
when no pupil is visible, the algorithm halts and begins pro-
cessing the next frame.

4.4. Ellipse fitting
Given a set of candidate feature points, the next step of the
algorithm is to find the best fitting ellipse. While other al-
gorithms commonly use least-squares fitting of an ellipse to
all the feature points (e.g. see [20]), gross errors made in the
feature detection stage can strongly influence the accuracy
of the results. Consider the detected feature points shown
in Figure 5c and the resulting best-fit ellipse using the least-
squares techniques shown in Figure 5d. Notice that a few
feature points not on the pupil contour dramatically reduces
the quality of the fit to an unacceptable level.

To address this issue, we apply the Random Sample Con-
sensus (RANSAC) paradigm for model fitting [4]. To our
knowledge, ours is the first application of RANSAC in the
context of eye tracking, however RANSAC is frequently
applied to other computer-vision problems (e.g., see [7]).
RANSAC is an effective technique for model fitting in the
presence of a large but unknown percentage of outliers in a

(a) (b)

(c) (d)

(e) (f)
Figure 4: Feature detection. (a) The original start point (yellow
circle) shoots rays (blue) to generate candidate pupil points (green
crosses). (b&c) The candidate pupil points shoot rays back to-
wards the start point to detect more candidate pupil points. (d)
All the candidate pupil points are shown. The average of these
locations is shown as a red circle. This location seeds the next
iteration. (e) The results of the second iteration. (f) The starting
locations from all iterations show a rapid convergence.

measurement sample. An inlier is a sample in the data at-
tributable to the mechanism being modeled whereas an out-
lier is a sample generated through error and is attributable to
another mechanism not under consideration. In our applica-
tion, inliers are all of those detected feature points that cor-
respond to the pupil contour and outliers are feature points
that correspond to other contours, such as that between the
eye lid and the eye. Least-squares methods use all available
data to fit a model because it is assumed that all of the sam-
ples are inliers and that any error is attributable exclusively
to measurement error. On the other hand, RANSAC admits
the possibility of outliers and only uses a subset of the data
to fit the model. In detail, RANSAC is an iterative proce-
dure that selects many small but random subsets of the data,
uses each subset to fit a model, and finds the model that has
the most agreement with the data set as a whole. The subset
of data consistent with this model is the consensus set.

In some cases, our two stage feature-detection process
results in very few outliers (e.g., see Figure 5e) while in
other cases, outliers are much more prevalent (e.g., see Fig-
ure 5f). Therefore it is important that we use the RANSAC
paradigm to find the ellipse that best fits the pupil contour.
The following procedure is repeated R times. First, five

5



samples are randomly chosen from the detected feature set
given that this is the minimum sample size required to de-
termine all the parameters of an ellipse. Singular Value De-
composition (SVD) on the conic constraint matrix gener-
ated with normalized feature-point coordinates [7] is used
to find the parameters of the ellipse that perfectly fit these
five points.

If the parameters of the ellipse are imaginary, the ellipse
center is outside of the image, or the major axis is greater
than two times the minor axis, five different points are ran-
domly chosen until this is no longer the case. Then, the
number of candidate feature points in the data set that agree
with this model (i.e. the inliers) are counted. Inliers are
those sample points for which the algebraic distance to the
ellipse is less than some threshold t. This threshold is de-
rived from a probabilistic model of the error expected based
on the nature of our feature detector. It is assumed that the
average error variance of our feature detector is approxi-
mately one pixel and that this error is distributed as a Gaus-
sian with zero mean. Thus to obtain a 95% probability that
a sample is correctly classified as an inlier, the threshold
should be derived from a χ2 distribution with one degree
of freedom [7]. This results in a threshold distance of 1.98
pixels. After R repetitions, the model with the largest con-
sensus set is used. Because it is often computationally in-
feasible to evaluate all possible feature point combinations,
the number of random subsets to try must be determined
such that it is assured that at least one of the randomly se-
lected subsets contains only inliers. This can be guaranteed
with probability p = 0.99, if

R =
log (1 − p)

log (1 − w5)
(3)

where w is the proportion of inliers in the sample. Although
w is not known a priori, its lower bound is given by the
maximum number of inliers found for any model in the it-
eration and thus R can initially be set very large and low-
ered using Equation 3 as the iteration proceeds. After the
necessary number of iterations, an ellipse is fit to the largest
consensus set (e.g., see Figure 5g).

4.5. Model-based optimization
Although the accuracy of the RANSAC fit may be sufficient
for many eye tracking applications, the result of ellipse fit-
ting can be improved through a model-based optimization
that does not rely on feature detection. To find the parame-
ters a, b, x, y, α of the best fitting ellipse, we minimize

−
∫

I(a + δ, b + δ, α, x, y, θ)dθ∫
I(a − δ, b − δ, α, x, y, θ)dθ

(4)

where δ = 1 and I(a, b, α, x, y, θ) is the pixel intensity at
angle θ on the contour of an ellipse defined by the param-
eters a,b,x,y and α. The search is initialized with the best-
fitting ellipse parameters as determined by the RANSAC fit.

Model-based - Pupil Center 1st 2nd 3rd
Narrow FOV 0.507 6.572 10.362
Wide FOV 0.591 7.527 12.316

Model-based Vector Difference 1st 2nd 3rd
Narrow FOV 0.471 0.981 1.204
Wide FOV 0.515 1.203 1.565

Table 1: Accuracy results of the validation study

4.6. Homographic mapping and calibration
In order to calculate the point of gaze of the user in the
scene image, a mapping between locations in the scene im-
age and an eye-position measure (e.g., the vector difference
between the pupil center and the corneal reflection) must be
determined. The typical procedure in eye-tracking method-
ology is to measure this relationship through a calibration
procedure [17]. During calibration, the user is required to
look at a number of scene points for which the positions in
the scene image are known. While the user is fixating each
scene point �s = (xs, ys, 1), the eye position �e = (xe, ye, 1)
is measured (note the homogeneous coordinates). We gen-
erate the mapping between the two sets of points using a
linear homographic mapping. This mapping H is a 3 × 3
matrix and has eight degrees of freedom. To determine the
entries of H , a constraint matrix is generated using mea-
sured point correspondences. Each correspondence gener-
ates two constraints and thus four correspondences are suf-
ficient to solve for H up to scale [7]. The null space of
the constraint matrix can be determined through SVD, and
provides H . Once this mapping is determined the user’s
point of gaze in the scene for any frame can be established
as �s = H�e. Note that we use a 3 × 3 grid of calibration
points distributed uniformly in the scene image to assure an
accurate prediction of eye movements. In this case, there
are more constraints than unknowns and SVD produces the
mapping H that minimizes the algebraic error distance.

5. Algorithm Validation
An eye-tracking evaluation was conducted in order to vali-
date the performance of the algorithm. Video was recorded
from the head-mounted eye tracker described in Section 2
while each of the three authors viewed two movie trailers
presented on a laptop computer. Prior to and after the view-
ing of each trailer, the user placed their head in a chin rest
and fixated a series of nine calibration marks on a white
board positioned approximately 60 cm away. The evalu-
ation was conducted twice for each user. During the sec-
ond evaluation, the narrow field of field lens (56o Field of
View (FOV)) used on the scene camera was replaced with
a wide field of view lens (111o FOV, and significant radial
distortion) to evaluate the decrease in eye-tracking quality
attributable to the non-linear distortion of the lens. The
video captured during the evaluation is available for view-
ing at http://hcvl.hci.iastate.edu/openEyes.

6



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: (a) The original image with noise reduction. (b) The image with the corneal reflection removed. (c) Candidate feature points.
(d) Ellipse fitted using least-square method. (e) The inliers (green crosses) and outliers (red crosses) differentiated by RANSAC. (f)
Another example with many more outliers. (g) Best-fit ellipse using only inliers. (h) Best-fit ellipse using model-based minimization. For
illustration purposes, in this figure we use N = 12.

Shown in Table 1 are the accuracy estimates derived
from the 1st, 2nd and 3rd viewing of the calibration grid
separately. Accuracy is measured as the distance between
the estimated point of gaze and the actual location of the
calibration marks in the scene image averaged over all nine
calibration points. The validation results are shown sepa-
rately for when the pupil center is used and when the vector
difference between the pupil center and the corneal reflec-
tion center is used to predict the point of gaze. Note that the
first viewing of the grid is used to generate the homographic
mapping for all predictions.

The first result to notice is that the error is significantly
lower when the vector difference between the pupil center
and the corneal reflection center is used instead of the pupil
center alone. The error tends to increase after each calibra-
tion for the point of gaze estimates based on the pupil center
alone. This is not surprising and is attributable to slippage
of the headgear. The second result to notice is that the pat-
tern of error is similar for both the wide and narrow field
of view scene lenses suggesting that the non-linearity has
little significance. If desired, this error can be corrected by
removing the radial distortion in each frame using standard
image-processing techniques.

6. Discussion
We developed a hybrid algorithm for eye tracking that com-
bines feature-based and model-based approaches. Both the
corneal reflection and the pupil are located through adap-
tive feature-based techniques. Then the RANSAC paradigm
is applied to maximize the accuracy of ellipse fitting in
the presence of gross feature-detection errors. Finally, a
model-based approach is applied to further refine the fit.
We conducted a validation study which indicates that the
algorithm performs well on video obtained from a low-cost
head-mounted eye tracker.

We are still in the process of exploring the robustness of
our algorithm to variations of its free parameters. For exam-
ple, the feature detection threshold that we used in our vali-
dation study was determined by hand but appears relatively
robust, and need not be set differently for different users.
However, this threshold will likely need to be tuned for a
given eye tracker. In the feature detection process, again
we did not explore the effects of manipulating the number
of rays and thus it may be that more rays may increase ro-
bustness at a minimal cost to runtime performance. We are
currently exploring the influence of these parameters on the
quality of the point of gaze estimates.

A number of obvious improvements could be made to
our current implementation. For example, instead of re-
moving the corneal reflection from the image, which can be
quite time consuming, the corneal reflection region could
simply be ignored in the other steps of the algorithm. There
is also room for additional improvement given that our cur-
rent algorithm essentially processes images independently
(with the exception that the estimate of the pupil center from
the previous frame is used as the best guess of the pupil
center in the current frame). For example, we are explor-
ing the improvement obtainable through prediction of the
pupil center using a Kalman filter. However, the potential
benefit of this technique for our hardware is difficult to esti-
mate given the low frame rates and the high velocity of eye
movements. We are also exploring automatic calibration.
Currently the calibration requires manual input to indicate
the location of calibration points in the scene image, which
can become tiresome. We expect automatic detection of cal-
ibration crosses in the scene image will be possible using
image processing techniques.

Our research is aimed at developing reliable eye-
tracking algorithms that can run on general-purpose hard-

7



ware and that can be widely employed in everyday
human-computer interfaces. Given that the lack of
freely available eye-tracking software has been one ob-
stacle in achieving this goal, we are making the imple-
mentation of our algorithm available in an open-source
software package under the GNU public license (GPL).
This software can be downloaded from our website at
http://hcvl.hci.iastate.edu/openEyes. We expect that given
the combination of open-source eye-tracking software with
low-cost eye-tracking systems built from off-the-shelf com-
ponents [1, 15, 18], interface designers will be able to ex-
plore the potential of eye movements for improving inter-
faces and that this will lead to an increased role for eye
tracking in the next generation of human-computer inter-
faces.

7. Acknowledgments
We would like thank Jason Babcock who aided in the con-
struction of the head-mounted eye tracker as well as Ap-
plied Science Laboratories for supporting this work.

References
[1] J. Babcock and J. Pelz, “Building a lightweight eye-

tracking headgear,” in ACM Eye tracking research
and applications symposium, San Antonio, TX, USA,
March 2004, pp. 109–114.

[2] P. Burt and E. Adelson, “A multiresolution spline with
application to image mosaics,” ACM Transactions on
Graphics, vol. 2, no. 4, pp. 217–236, 1983.

[3] J. Daugman, “High confidence visual recognition of
persons by a test of statistical independence,” IEEE
Transactions on Pattern Analysis and Machine Intel-
legence, vol. 15, no. 11, pp. 1148–1161, 1993.

[4] M. Fischler and R. Bolles, “Random sample consen-
sus: a paradigm for model fitting with applications
to image analysis and automated cartography,” Com-
munications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[5] D. Hansen and A. Pece, “Eye tracking in the wild,”
Computer Vision and Image Understanding, vol. 98,
no. 1, pp. 155–181, 2005.

[6] A. Haro, M. Flickner, and I. Essa, “Detecting and
tracking eyes by using their physiological properties,
dynamics, and appearance,” in IEEE Conference on
Computer Vision and Pattern Recognition, June 2000,
pp. 163–168.

[7] R. Hartley and A. Zisszerman, Multiple view geome-
try in computer vision. Cambridge, UK: Cambridge
University Press, 2000.

[8] R. Jacob, “The use of eye movements in human-
computer interaction techniques: what you look at is

what you get,” ACM Transactions on Information Sys-
tems, vol. 9, no. 2, pp. 152–169, 1991.

[9] P. Majaranta and K. Raiha, “Twenty years of eye typ-
ing: systems and design issues,” in ACM Eye tracking
research and applications symposium, New Orleans,
Louisiana, USA, March 2002, pp. 15–22.

[10] C. Morimoto, A. Amir, and M. Flickner, “Detecting
eye position and gaze from a single camera and 2 light
sources,” in Proceedings. 16th International Confer-
ence on Pattern Recognition, 2002, pp. 314–317.

[11] K. Nishino and S. Nayar, “Eyes for relighting,” ACM
SIGGRAPH 2004, vol. 23, no. 3, pp. 704–711, 2004.

[12] T. Ohno, N. Mukawa, and A. Yoshikawa, “Freegaze:
a gaze tracking system for everyday gaze interaction,”
in Eye tracking research and applications symposium,
March 2002, pp. 15–22.

[13] D. Parkhurst and E. Niebur, “Variable resolution dis-
plays: a theoretical, practical and behavioral evalu-
ation,” Human Factors, vol. 44, no. 4, pp. 611–29,
2002.

[14] D. Parkhurst and E. Niebur, “A feasibility test for per-
ceptually adaptive level of detail rendering on desk-
top systems,” in ACM Applied Perception in Graphics
and Visualization Symposium, New York, NY, USA,
November 2004, pp. 105–109.

[15] J. Pelz, R. Canosa, J. Babcock, D. Kucharczyk, A. Sil-
ver, and D. Konno, “Portable eyetracking: A study of
natural eye movements,” in Proceedings of the SPIE,
Human Vision and Electronic Imaging, San Jose, CA,
USA, 2000, pp. 566–582.

[16] L. Sibert and R. Jacob, “Evaluation of eye gaze in-
teraction,” in SIGCHI conference on Human factors
in computing systems, The Hague, The Netherlands,
April 2000, pp. 281–288.

[17] D. Stampe, “Heuristic filtering and reliable calibration
methods for video-based pupil-tracking systems,” Be-
havior Research Methods, Instruments, and Comput-
ers, vol. 25, no. 2, pp. 137–142, 1993.

[18] D. Winfield, D. Li, J. Babcock, and D. Parkhurst, “To-
wards an open-hardware open-software toolkit for ro-
bust low-cost eye tracking in hci applications,” in Iowa
State University Human Computer Interaction Techni-
cal Report ISU-HCI-2005-04, 2005.

[19] L. Young and D. Sheena, “Survey of eye movement
recording methods,” Behavior Research Methods and
Instrumentation, vol. 7, pp. 397–429, 1975.

[20] D. Zhu, S. Moore, and T. Raphan, “Robust pupil cen-
ter detection using a curvature algorithm,” Computer
Methods and Programs in Biomedicine, vol. 59, no. 3,
pp. 145–157, 1999.

[21] J. Zhu and J. Yang, “Subpixel eye gaze tracking,”
in IEEE Conference on Automatic Face and Gesture
Recognition, May 2002, pp. 124–129.

8


